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WHEN ARE ON-OFF SOURCES SIS?
CONDITIONS AND APPLICATIONS

Sarut Vanichpun and Armand M. Makowski

Department of Electrical and Computer Engineering

Institute for Systems Research

University of Maryland

College Park, MD 20742

E-mail: {sarut,armand}@eng.umd.edu

Phone: (301) 405-6844

Abstract

Recent advances from the theory of multivariate stochastic order-
ings can be used to formalize the “folk theorem” to the effect that
positive correlations lead to larger buffer levels at a discrete-time infi-
nite capacity multiplexer queue. For instance, it is known that if the
input traffic is larger than its independent version in the supermodular
(sm) ordering, then their corresponding buffer contents are similarly
ordered in the increasing convex (icx) ordering.

A sufficient condition for the aforementioned sm comparison is
the stochastic increasingness in sequence (SIS) property of the input
traffic. In this paper, we provide conditions for the stationary on-off
source to be SIS. We then use this result to find conditions under which
the superposition of independent on-off sources and the M |G|∞ input
model are each sm greater than their respective independent version.
Similar but weaker SIS conditions are also obtained for renewal on-off
processes.

1



1 Introduction

Consider the following discrete-time queueing model that describes the op-
eration of a multiplexer at a network node: A flow of packets arrive to a
buffer with infinite capacity. Packets are transmitted out of the buffer in
order of arrival over a communication link of constant rate. With time orga-
nized in contiguous timeslots of identical duration, let Qt denote the number
of packets still present in the system at the beginning of timeslot [t, t + 1)
and let At denote the number of new packets arriving into the buffer during
that timeslot. If the buffer output link can transmit c packets/slot, then the
buffer content evolves according to the Lindley recursion

Qt+1 = [Qt + At − c]+, t = 0, 1, . . . (1)

for some given initial condition Q0.
For this model there is ample evidence on a number of fronts that positive

correlations in the packet input process {At, t = 0, 1, . . .} lead to increased
buffer occupancy and larger buffer levels over that associated with the cor-
responding independent version. This conclusion is already apparent in the
simulation studies carried out by Livny et al. [9] (and references therein) with
the help of the TES modeling tool. On the theoretical side, when considering
an associated input stream [Definition 4.1], the effective bandwidth calcula-
tions [5] [6] lead naturally to an asymptotic version of this fact. Recently, this
“folk theorem” has received a more formal grounding with the help of ideas
from the theory of multivariate stochastic orderings established by Meester
and Shanthikumar [11] and by Shaked and Shanthikumar [16] where input
sequences to the Lindley recursion (1) are compared in the supermodular
(sm) ordering [Definition 3.3] and the buffer contents in the increasing con-
vex (icx) ordering [Definition 3.2]. The sm ordering is well suited to capture
positive dependence in the components of a random vector, while the icx
ordering formalizes comparability in terms of variability and size. A number
of contributions along these lines can already be found in the monograph by
Szekli [19].

Indeed, let {Ât, t = 0, 1, . . .} denote the independent version [Definition
3.10] of the input process {At, t = 0, 1, . . .}. According to general comparison
results based on properties of the sm ordering [3] [22, Section VI], if the
comparison

{Ât, t = 0, 1, . . .} ≤sm {At, t = 0, 1, . . .} (2)
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holds, then the corresponding buffer content processes are icx ordered with

Q̂t ≤icx Qt, t = 0, 1, . . . . (3)

provided Q̂0 = Q0. A steady state comparison is easily derived from (3) in
a standard manner whenever appropriate [18, 21], but this issue will not be
considered any further in this paper.

As we plan to make use of this framework, we need to identify the ap-
propriate notion of positive dependence which ensures (2). Although the
aforementioned notion of association might have been a natural candidate
for capturing this positive dependence, it appears too weak to imply (2).
The key insight was provided by Meester and Shanthikumar [11] through the
notion of stochastic increasingness in sequence (SIS) [Definition 4.2] as the
appropriate form of positive dependence. Not only does SIS imply associa-
tion [2, Thm. 4.7, p. 146], but it also provides a sufficient condition for (2)
to hold [11, Thm. 3.8, p. 350].

At this point it is natural to wonder whether the input process {At, t =
0, 1, . . .} obeys the SIS property under any of the standard traffic models, and
more generally, whether the comparisons (2)-(3) hold. This issue was taken
on by Vanichpun in his M.S. thesis [21] for three popular (discrete-time)
traffic models, namely the Fractional Gaussian Noise traffic model the on-off
source model and the M |G|∞ traffic model. In the present paper we report
on some of the results obtained for the discrete-time on-off source model,
independent aggregation of independent on-off sources and the M |G|∞ traffic
model when interpreted as a limit of superposed on-off sources.

The main contributions of the paper can be summarized as follows:

(i) The statistics of an on-off source are fully determined by a pair of in-
dependent {1, 2, . . .}-valued random variables (rvs) B and I describing
the generic on-period and off-period durations, respectively. The main
results for stationary on-off sources, presented in Propositions 6.1 and
6.2, provide simple and easily checkable sufficient conditions on the rvs
B and I for the corresponding on-off source to be SIS;

(ii) Likhanov, Tsybakov and Georganas [8] have shown that the M |G|∞
input model can be thought of the limit of a superposition of indepen-
dent stationary on-off sources under an appropriate rescaling as the
number of multiplexed sources becomes unboundedly large. With the
help of this limiting process, we use the results for on-off sources to

3



find sufficient conditions on the session duration rv so that (2) holds
[Theorem 8.2];

(iii) A similar discussion can be carried out when using the renewal version
(instead of the stationary version) of the component on-off processes.
The main results along these lines are reported in Propositions 11.1
and 11.2.

Some of the proofs and details are omitted in the interest of brevity; they
are available in [21]. A summary of some of the results is presented in the
conference paper [22].

The paper is organized as follows: Some basic notation and definitions
for integer-valued rvs are collected in Section 2, and stochastic orderings
are introduced in Section 3. The key notion of stochastic increasingness in
sequence is presented in Section 4. Stationary on-off sources are described
in some details in Section 5, and the main results are presented in Section
6. The proofs of these results are given in Section 10 with some preliminary
results derived in Section 9. The superposition of a finite number of on-off
sources is considered in Section 7, and the M |G|∞ model is discussed in
Section 8. Non-stationary on-off sources are discussed in Section 11.

2 Notation and definitions

Equivalence in law or in distribution between rvs and sequences of rvs is
denoted by =st. In addition, weak convergence is denoted by =⇒K (with K
going to infinity).

For any {1, 2, . . .}-valued rv X, set

S(X) := {t = 1, 2, . . . : P [X ≥ t] > 0} (4)

and let
TX := sup{t = 1, 2, . . . : P [X ≥ t] > 0}. (5)

Given that t → P [X ≥ t] is non-increasing, it is plain that S(X) = {1, . . . , TX}
if TX is finite and that S(X) = {1, 2, . . .} if TX = ∞. Finally, define the haz-
ard function (also known as the failure rate function) of the rv X by

hX(t) =
P [X = t]

P [X ≥ t]
, t ∈ S(X). (6)
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Definition 2.1 An {1, 2, . . .}-valued rv X is decreasing failure rate (DFR)
if the mapping S(X) → IR+ : t → hX(t) is decreasing.

If the {1, 2, . . .}-valued rv X has finite mean, we define its forward recur-
rence time X̂ to be the {1, 2, . . .}-valued rv with pmf given by

P
[
X̂ = t

]
=

P [X ≥ t]

E [X]
, t = 1, 2, . . . (7)

Note that P
[
X̂ ≥ t

]
= 0 if and only if P [X ≥ t] = 0, whence S(X̂) = S(X).

The next lemma provides a simple characterization of the DFR property
for the rv X̂. Its proof is elementary and is therefore omitted.

Lemma 2.2 For any {1, 2, . . .}-valued rv X with finite mean, the corre-
sponding {1, 2, . . .}-valued rv X̂ is DFR if and only if

hX̂(t + 1) ≤ hX(t) whenever t + 1 ∈ S(X).

3 Stochastic orderings

In this section, we summarize basic definitions concerning the stochastic
orderings of random vectors. Additional information can be found in the
monographs by Shaked and Shanthikumar [17], and by Stoyan [18].

Definition 3.1 Let F be a class of Borel measurable functions ϕ : IRn → IR.
We say that the two IRn-valued rvs X and Y satisfy the relation X ≤F Y if

E [ϕ(X)] ≤ E [ϕ(Y)] (8)

for all functions ϕ in F , whenever the expectations exist.

This generic definition has been specialized in the literature; here are two
important examples which are used repeatedly in the sequel.

Definition 3.2 The IRn-valued rvs X and Y are ordered according to

• the usual stochastic ordering, written X ≤st Y, if (8) holds for all
increasing functions ϕ : IRn → IR;
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• the increasing convex ordering, written X ≤icx Y, if (8) holds for all
increasing convex functions ϕ : IRn → IR.

The icx ordering is appropriate for comparing the variability of rvs. Sev-
eral stochastic orderings have been found well suited for comparing the de-
pendence structures of random vectors. Here we rely on the supermodular
ordering which has recently been used in several queueing and reliability ap-
plications [3, 4, 16]. We begin by introducing the class of functions associated
with this ordering.

Definition 3.3 A function ϕ : IRn → IR is supermodular (sm) if

ϕ(x ∨ y) + ϕ(x ∧ y) ≥ ϕ(x) + ϕ(y), x,y ∈ IRn

where we set x∨y = (x1 ∨ y1, . . . , xn ∨ yn) and x∧y = (x1 ∧ y1, . . . , xn ∧ yn).

We are now ready to define the supermodular ordering.

Definition 3.4 The IRn-valued rvs X and Y are ordered according to the
supermodular ordering, written X ≤sm Y, if (8) holds for all supermodular
Borel measurable functions ϕ : IRn → IR.

Additional information on the sm ordering can be found in [3, 4, 11, 12,
16, 20]. In Sections 7 and 8 we shall need the fact that the sm ordering is
closed under convolution.

Lemma 3.5 Let X,Y and Z be independent IRn-valued rvs. If X ≤sm Y,
then X + Z ≤sm Y + Z.

Iterating Lemma 3.5 readily leads to the following useful fact, but first,
a definition:

Definition 3.6 For IRn-valued rvs X and X̂, we say that X̂ = (X̂1, . . . , X̂n)
is an independent version of X = (X1, . . . , Xn) if the rvs X̂1, X̂2, . . . , X̂n are
mutually independent with X̂k =st Xk, k = 1, . . . , n.

Corollary 3.7 Let {Xk, k = 1, 2, . . .} denote a sequence of mutually in-
dependent IRn-valued rvs. For each k = 1, 2, . . ., let X̂k = (X̂k1, . . . , X̂kn)
denote an independent version of Xk. Assume the rvs {X̂k, k = 1, 2, . . .} to
be mutually independent. If X̂k ≤sm Xk for all k = 1, 2, . . ., then for each
K = 1, 2, . . ., the rv

∑K
k=1 X̂i is an independent version of

∑K
k=1 Xk and

K∑
k=1

X̂k ≤sm

K∑
k=1

Xk, K = 1, 2, . . . . (9)
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We also note [12, Thm. 3.1, p. 112]

Lemma 3.8 Let {Xi, i = 1, 2, . . .} and {Yi, i = 1, 2, . . .} denote two se-
quences of IRn-valued rvs such that Xn =⇒n X∞ and Yn =⇒n Y∞. If
Xn ≤sm Yn for each n = 1, 2, . . ., then X∞ ≤sm Y∞.

Finally, we find it useful to extend some of the earlier definitions to se-
quences of rvs.

Definition 3.9 The two IR-valued sequences X = {Xn, n = 1, 2, . . .} and
Y = {Yn, n = 1, 2, . . .} satisfy the relation X ≤sm Y if (X1, . . . , Xn) ≤sm

(Y1, . . . , Yn) for all n = 1, 2, . . ..

Definition 3.10 For sequences of IR-valued rvs X = {Xn, n = 1, 2, . . .} and
X̂ = {X̂n, n = 1, 2, . . .}, we say that X̂ is an independent version of X if for
each n = 1, 2, . . ., the IRn-valued rv (X̂1, . . . , X̂n) is an independent version
of the IRn-valued rv (X1, . . . , Xn).

4 Positive dependence

Positive dependence in a collection of rvs can be captured in several ways.
The association of rvs is one of the most useful such characterizations; it
was introduced by Esary, Proschan and Walkup [7] and has proved useful in
various settings [2].

Definition 4.1 The IR-valued rvs {X1, . . . , Xn} are associated if, with X =
(X1, . . . , Xn), the inequality

E [f(X)g(X)] ≥ E [f(X)]E [g(X)]

holds for all non-decreasing functions f, g : IRn → IR for which the expecta-
tions exist and are finite.

Here, we focus on a stronger notion of positive dependence:

Definition 4.2 The IR-valued rvs {X1, . . . , Xn} are stochastic increasing-
ness in sequence (SIS) if for each k = 1, 2, . . . , n−1, the family of conditional
distributions {[Xk+1|X1 = x1, . . . , Xk = xk]} is stochastically increasing in
x = (x1, . . . , xk).
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More precisely, this definition states that for each k = 1, 2, . . . , n− 1, for
x and y in IRk with x ≤ y componentwise, it holds that

[Xk+1|(X1, . . . , Xk) = x] ≤st [Xk+1|(X1, . . . , Xk) = y]

where [Xk+1|(X1, . . . , Xk) = x] denotes any rv distributed according to the
conditional distribution of Xk+1 given (X1, . . . , Xk) = x (with a similar in-
terpretation for [Xk+1|(X1, . . . , Xk) = y]).

These definitions can be extended to sequences in a natural way along
the lines of Definition 3.9.

Definition 4.3 The IR-valued sequence X = {Xn, n = 1, 2, . . .} is SIS (resp.
associated) if for each n = 1, 2, . . ., the rvs {X1, . . . , Xn} are SIS (resp.
associated).

If the IR-valued rvs {X1, . . . , Xn} are SIS, then they are necessarily as-
sociated [2, Thm. 4.7, p. 146] but the converse may not be true. The next
result was established by Meester and Shanthikumar [11], and relates the
SIS property to the supermodular ordering. This fact will prove crucial for
subsequent developments in this paper:

Theorem 4.4 If the IR+-valued rvs {X1, . . . , Xn} are SIS, then

(X̂1, X̂2, . . . , X̂n) ≤sm (X1, X2, . . . , Xn), (10)

where (X̂1, X̂2, . . . , X̂n) is the independent version of (X1, X2, . . . , Xn).

5 Modeling on-off sources

A discrete-time on-off source with peak rate r is described by a succession
of cycles, each such cycle comprising an off-period followed by an on-period.
During the on-periods the source is active and produces “fluid” at constant
rate r 1; the source is silent during the off-periods: For each n = 0, 1, . . ., let
Bn and In denote the durations (in timeslots) of the on-period and off-period
in the (n + 1)st cycle, respectively. Thus, if the epochs {Tn, n = 0, 1, . . .}
denote the beginning of successive cycles, with T0 := 0 we have Tn+1 :=

1For simplicity, we set this rate to be unity, say one packet/slot, i.e., r = 1.
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∑n
�=0 I� + B� (n = 0, 1, . . .). The activity of the source is then described by

the {0, 1}-valued process {At, t = 0, 1, . . .} given by

At :=
∞∑

n=0

1 [Tn + In ≤ t < Tn+1] (11)

for all t = 0, 1, . . ., with the source active (resp. silent) during timeslot [t, t+1)
if At = 1 (resp. At = 0).

An independent on-off source is one for which (i) the {1, 2, . . .}-valued rvs
{In, n = 1, . . .} and {Bn, n = 1, . . .} are mutually independent rvs which are
independent of the pair of rvs I0 and B0 associated with the initial cycle; and
(ii) the rvs {In, n = 1, . . .} (resp. {Bn, n = 1, . . .}) are i.i.d. rvs with generic
off-period duration rv I (resp. on-period duration rv B). Throughout the
generic rvs B and I are assumed to be independent {1, 2, . . .}-valued rvs such
that 0 < E [B] ,E [I] < ∞, and we simply refer to the independent on-off
process just defined as the on-off source (I, B).

In general, the activity process (11) is not stationary unless the IN-valued
rvs I0 and B0 are selected appropriately. One possible way is to use the
following variation on constructions given in [1, 15]: With

p :=
E [B]

E [B] + E [I]
, (12)

we introduce the {0, 1}-valued rv U given by

P [U = 1] = p = 1 − P [U = 0] . (13)

Let B̂ and Î denote two {1, 2, . . .}-valued rvs distributed according to the
forward recurrence time (7) associated with B and I, respectively. A sta-
tionary version of (11), still denoted {At, t = 0, 1, . . .}, is now obtained by
selecting (I0, B0) so that

(I0, B0) =st (0, B̂)U + (Î , B)(1 − U) (14)

with rvs U , B, B̂ and Î taken to be mutually independent and independent
of the rvs {Bn, In, n = 1, . . .}. With that selection, the rvs {At, t = 0, 1, . . .}
form a stationary sequence with

P [At = 1] = 1 − P [At = 0] = p, t = 0, 1, . . .

where p is the average rate (12).
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Note that the independent version of the stationary on-off process is a
sequence {Ât, t = 0, 1, . . .} of i.i.d. {0, 1}-valued rvs, with

P
[
Ât = 1

]
= 1 − P

[
Ât = 0

]
= p, t = 0, 1, . . .

where p is as above. It is easily seen that {Ât, t = 0, 1, . . .} is also a stationary
on-off process with geometric on-period and off-period, i.e., the corresponding
on-period duration rv B (respectively, off-period duration rv I) is geomet-
rically distributed with parameter p (respectively, 1 − p) 2, i.e., B =st G(p)
and I =st G(1 − p). In other words, {Ât, t = 0, 1, . . .} can be interpreted as
the discrete-time stationary on-off process (G(1 − p),G(p)).

6 The main results

As we have in mind to obtain the comparison (2) for the stationary on-off
source, we seek the conditions for the stationary on-off source to satisfy the
assumption of Theorem 4.4. The following proposition provides sufficient
conditions on I and B for the discrete-time stationary on-off source (I, B)
to have the SIS property.

Proposition 6.1 Assume 1 < TB and 1 < TI . The discrete-time stationary
on-off source (I, B) satisfies the SIS property if the conditions (i)-(v) below
hold, where

(i) The rvs I and B are DFR;

(ii) hI(1) + hB(2) ≤ 1 and hI(2) + hB(1) ≤ 1;

(iii) The rvs Î and B̂ are DFR;

(iv) 1
E[I]

+ 1
E[B]

≤ 1;

(v) hÎ(2) + hB(1) ≤ 1 and hB̂(2) + hI(1) ≤ 1.

2For α (0 < α < 1), an {1, 2 . . .}-valued rv X is said to be a geometric rv with parameter
α if it is distributed according to the pmf P [X = k] = αk−1(1 − α) for all k = 1, 2, . . ., in
which case we write X =st G(α).
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The proof of Proposition 6.1 is discussed in Section 10 with some pre-
liminary results derived in Section 9. A somewhat more compact version of
Proposition 6.1 but under stronger assumptions is given in

Proposition 6.2 Assume 1 < TB and 1 < TI . The conditions (i)-(v) in
Proposition 6.1 are implied by the following conditions:

(A.1) The rvs I and B are DFR;

(A.2) P [I = 1] + P [B = 1] ≤ 1;

(A.3) The rvs Î and B̂ are DFR;

(A.4) 1
E[I]

+ 1
E[B]

≤ 1.

Proof. Obviously, since (A.1), (A.3) and (A.4) coincide with (i), (iii) and
(iv), respectively, we need only show that (ii) and (v) are implied by (A.1)–
(A.4). To that end, we note that (A.2) is equivalent to

hB(1) + hI(1) ≤ 1. (15)

The fact that the rvs I and B are DFR implies hB(2) ≤ hB(1) and hI(2) ≤
hI(1), and (ii) follows from (15).

On the other hand, the rvs Î and B̂ being DFR, it follows from Lemma 2.2
that hÎ(2) ≤ hI(1) and hB̂(2) ≤ hB(1). Combining this observation with (15)
we obtain (v).

7 Superposition of finitely many sources

Multiplexing is a major function in communication networks, with multi-
plexed traffic processes being created at routers and multiplexer buffers.
Thus, with an on-off source representing a traffic stream, we construct mul-
tiplexed traffic by superposing a number of on-off sources. In this and the
next sections we present results on the comparison (2) for the superposition
of a finite and infinite number of independent on-off sources, respectively, the
latter case giving rise to the so-called M |G|∞ input model.
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More formally, consider K independent, but not necessarily identically
distributed, on-off sources. For each k = 1, 2, . . . , K, let {Ak

t , t = 0, 1, . . .}
denote the stationary on-off source (Ik, Bk). The superposition of these K
on-off processes results in the stationary process {MK

t , t = 0, 1, . . .} given by

MK
t =

K∑
k=1

Ak
t , t = 0, 1, . . . . (16)

Its traffic intensity
K∑

k=1

pk =
K∑

k=1

E
[
Bk

]

E [Bk] + E [Ik]
(17)

represents the average number of arrivals per slot generated by the superpo-
sition process.

Assume now that for each k = 1, 2, . . . , K, the comparison

{Âk
t , t = 0, 1, . . .} ≤sm {Ak

t , t = 0, 1, . . .} (18)

holds where {Âk
t , t = 0, 1, . . .} is the independent version of {Ak

t , t = 0, 1, . . .}.
Proposition 6.1 provides sufficient conditions for (18) to hold.

By appealing to Corollary 3.7 it is a simple matter to conclude that

{
K∑

k=1

Âk
t , t = 0, 1, . . .} ≤sm {

K∑
k=1

Ak
t , t = 0, 1, . . .} (19)

where the independent versions {Âk
t , t = 0, 1, . . .}, k = 1, . . . , K, are taken

to be mutually independent, and {∑K
k=1 Âk

t , t = 0, 1, . . .} is the independent
version of {∑K

k=1 Ak
t , t = 0, 1, . . .}.

8 Superposition of infinitely many sources

We now consider the superposition of i.i.d. on-off sources as the number of
sources grows unboundedly large. Some form of rescaling is needed in order
to ensure a non-trivial limit. More precisely, for each K = 1, 2, . . ., let the kth

on-off source {A(K,k)
t , t = 0, 1, . . .} be a stationary on-off source with same

on- and off-period duration rvs (I(K), B). The resulting superposition process
{MK

t , t = 0, 1, . . .} given in (16) becomes

MK
t =

K∑
k=1

A(K,k)(t), t = 0, 1, . . . (20)
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with traffic intensity λKE [B] where

λK =
K

E [B] + E [I(K)]
. (21)

As K goes to infinity, Likhanov, Tsybakov and Georganas [8] have shown
that the limiting process of the superposition (20) is a stationary M |G|∞
input process, that is the sequence number of busy servers in the infinite
server system fed by a discrete-time Poisson process with rate λ (customers
per timeslot) and with generic service time B (expressed in timeslots).3 We
refer to this stationary M |G|∞ process as the M |G|∞ input process (λ, B);
a more detailed treatment of M |G|∞ input processes can be found in [10,
14]. This process is a versatile class of input traffic since both short-range
and long-range dependent traffic can be generated by properly selecting the
service distribution of B.

Theorem 8.1 Let {MK
t , t = 0, 1, . . .} be the superposition of K i.i.d. sta-

tionary on-off sources (I(K), B). If limK→∞ λK = λ for some λ > 0 and

limK→∞ P
[
I(K) ≤ r

]
= 0 for each r = 1, 2, . . ., then

{MK
t , t = 0, 1, . . .} =⇒K {Mt, t = 0, 1, . . .}, (22)

where {Mt, t = 0, 1, . . .} is the M |G|∞ process (λ, B).

Theorem 8.1 is essentially a discrete-time version of the celebrated Palm-
Khintchin Theorem with the session durations playing the role of marks.
The on-period duration rv B in the on-off processes simply mutates into the
session duration rv in the M |G|∞ model. We note that this limiting process
does not depend on the fine details of off-period duration distributions.

As shown below, this last fact provides a natural vehicle for establishing
a form of the comparison result (2) for M |G|∞ processes. Indeed, with
Theorem 8.1 in mind, given a target M |G|∞ model (λ, B), we can construct
a sequence of superposition processes (20) that converges in distribution to
the M |G|∞ process (λ, B). However, as we have some latitude in selecting
the rv I(K), we shall make a choice that guarantees the convergence (22) and
yet ensures (19) for large K, say by satisfying the assumptions of Propositions
6.1 or 6.2 for the component processes. The desired conclusion would then
follow from Lemma 3.8. This approach gives rise to the following comparison
result:

3In this context it is helpful to think of B as modeling the duration of a session.
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Theorem 8.2 Let {Mt, t = 0, 1, . . .} be an M |G|∞ input process (λ, B) such
that B and B̂ are DFR rvs. Its independent version {M̂t, t = 0, 1, . . .} is a
sequence of i.i.d. Poisson rvs with mean λE [B] and we have the comparison

{M̂t, t = 0, 1, . . .} ≤sm {Mt, t = 0, 1, . . .}. (23)

Theorem 8.2 is not asserting the validity of the SIS property for M |G|∞
input processes, but rather a consequence of it. We were not able to prove
this SIS property, and in fact suspect that it does not hold true.

The proof of Theorem 8.2 given below relies on Theorem 8.1 and on the
observations of Section 7. Another proof under no DFR assumption on the
rvs B and B̂ is provided in [22].

Proof. Fix K = 1, 2, . . . such that K > λ(1 + E [B]): For each t = 0, 1, . . .,
we have the superposition process (20) where for each k = 1, . . . , K, the

component process {A(K,k)
t , t = 0, 1, . . .} is the on-off source (I(K), B). First,

we select the rv I(K) so that λK = λ, with (21) yielding the relation

E
[
I(K)

]
=

K − λE [B]

λ
. (24)

Next, if we take I(K) =st G(1−α(K)) for some 0 < α(K) < 1, then E
[
I(K)

]
=

α(K)−1 and the mean value condition (24) implies

α(K) =
λ

K − λE [B]
.

It is plain that limK→∞ α(K) = 0 and limK→∞ P
[
I(K) ≤ r

]
= 0 for each

r = 1, 2, . . .. Consequently, the sequence of rvs {I(K), K = 1, 2, . . .} satisfies
the requirements of Theorem 8.1 so that (22) holds with {Mt, t = 0, 1, . . .}
the M |G|∞ input process (λ, B).

Next we turn to the the SIS conditions of Proposition 6.2 for the com-
ponent on-off processes defined above. For each K = 1, 2, . . ., it is easy to
check that I(K) =st Î(K) and that these rvs are DFR since hI(K)(t) = α(K)
for all t = 1, 2, . . .. Thus, by taking the rvs B and B̂ to be DFR, Conditions
(A.1) and (A.3) are satisfied. Conditions (A.2) and (A.4) require that

P
[
I(K) = 1

]
+ P [B = 1] ≤ 1

14



and
1

E [I(K)]
+

1

E [B]
≤ 1,

respectively. But limK→∞ P
[
I(K) = 1

]
= 0 and limK→∞ E

[
I(K)

]
= ∞,

whence Conditions (A.2) and (A.4) are indeed satisfied if K is large enough,
say K > K� for some K� > 0 – Indeed recall that E [B] ≥ 1 since B is
{1, 2, . . .}-valued.

Thus, whenever K > K�, the rvs I(K) and B satisfy conditions (A.1)-

(A.4), whence for each k = 1, . . . , K, the component process {A(K,k)
t , t =

0, 1, . . .} is SIS, and by Theorem 4.4, we get

{Â(K,k)
t , t = 0, 1, . . .} ≤sm {A(K,k)

t , t = 0, 1, . . .} (25)

where {Â(K,k)
t , t = 0, 1, . . .} is the independent version of {A(K,k)

t , t = 0, 1, . . .}.
As in Section 7, upon combining (25) and Corollary 3.7, we obtain

{M̂K
t , t = 0, 1, . . .} ≤sm {MK

t , t = 0, 1, . . .}. (26)

with {M̂K
t , t = 0, 1, . . .} denoting the independent version of {MK

t , t =
0, 1, . . .}. We have

M̂K
t =

K∑
k=1

Â
(K,k)
t t = 0, 1, . . .

where the independent versions {Â(K,k)
t , t = 0, 1, . . .}, k = 1, . . . , K, are taken

to be mutually independent. The independent version {Â(K,k)
t , t = 0, 1, . . .}

is a sequence of i.i.d. {0, 1}-valued rvs with P
[
Âk

t = 1
]

= p(K) for all t =
0, 1, . . . where

p(K) =
E [B]

E [B] + E [I(K)]
=

E [B]

E [B] + α(K)−1
=

1

K
λE [B] .

Consequently, for each t = 0, 1, . . ., the rv M̂K
t is a Binomial rv with pa-

rameters (K, p(K)), whence the independent version {M̂K
t , t = 0, 1, . . .} is a

sequence of i.i.d. Binomial rvs with parameters (K, λE[B]
K

).
We are now ready to let K go to infinity in (26): By Lemma 3.8 we obtain

the desired conclusion (23) if we show that

{M̂K
t , t = 0, 1, . . .} =⇒K {M̂t, t = 0, 1, . . .} (27)
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for some collection {M̂t, t = 0, 1, . . .} of i.i.d. Poisson rvs with parameter
λE [B]. Indeed, it is well known [14, Prop. 2, p. 277] that the stationary
M |G|∞ input process (λ, B) has Poisson marginals with parameter λE [B],
whence such a limit {M̂t, t = 0, 1, . . .} would indeed be the independent
version of the M |G|∞ input process {Mt, t = 0, 1, . . .}. However, by Pois-
son’s Convergence Theorem, for each t = 0, 1, . . ., the Binomial rv M̂K

t with

parameters (K, λE[B]
K

) converges in distribution to a Poisson rv with mean
λE [B], and the convergence (27) of the sequences of i.i.d. rvs readily follows.

9 Expressions for stationary on-off sources

We begin the proof of Proposition 6.1 by developing some needed expressions:
Indeed, for the stationary on-off source (I, B), the SIS condition takes a much
simpler form which we now present: For each t = 0, 1, . . ., with the notation
At = (A0, . . . , At), we need to establish the inequalities

P
[
At+1 = 1|At = xt

]
≤ P

[
At+1 = 1|At = yt

]
(28)

for any pair xt = (x0, . . . , xt) and yt = (y0, . . . , yt) in {0, 1}t+1 such that
xt ≤ yt componentwise in {0, 1}t+1 with

P
[
At = xt

]
> 0 and P

[
At = yt

]
> 0. (29)

As we proceed to evaluate the relevant conditional probabilities, in all cases
we rely on the basic observation that

P
[
At+1 = 1|At = xt

]
=

P [At = xt; At+1 = 1]

P [At = xt]
(30)

for every xt in {0, 1}t+1 for which P [At = xt] > 0. We first find the expres-
sion (30) of the stationary on-off source for the case t = 0.

Lemma 9.1 For the stationary on-off source (I, B), we have

P [A1 = 1|A0 = 0] = hÎ(1) (31)

and
P [A1 = 1|A0 = 1] = 1 − hB̂(1). (32)
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Proof. The conclusions (31) and (32) are easy consequences of the facts

P [A1 = 1|A0 = 0] =
P [A0 = 0, A1 = 1]

P [A0 = 0]

=
P [I0 = 1, B0 ≥ 1]

P [I0 ≥ 1]

=
P [I0 = 1, B0 ≥ 1|I0 > 0]

P [I0 ≥ 1|I0 > 0]

=
P

[
Î = 1

]

P
[
Î ≥ 1

]P [B ≥ 1]

since P [B ≥ 1] = 1, and

P [A1 = 1|A0 = 1] =
P [A0 = 1, A1 = 1]

P [A0 = 1]

=
P [I0 = 0, B0 ≥ 2]

P [I0 = 0, B0 ≥ 1]

=
P [B0 ≥ 2|I0 = 0]

P [B0 ≥ 1|I0 = 0]

=
P

[
B̂ ≥ 2

]

P
[
B̂ ≥ 1

] .

To describe the results when t = 1, 2, . . ., we associate with any xt in
{0, 1}t+1 the index �(xt) of “last change” given by

�(xt) := min {r = 0, 1, . . . , t : xr = . . . = xt} .

If �(xt) > 0, then x�(xt)−1 	= x�(xt) = . . . = xt, while if �(xt) = 0, then
x0 = x1 = . . . = xt. Fix t = 1, 2, . . . throughout.

Proposition 9.2 For the stationary on-off source (I, B), for each xt in
{0, 1}t+1 with xt = 1, we have

P
[
At+1 = 1|At = xt

]
=




1 − hB(t − �(xt) + 1) if �(xt) > 0

1 − hB̂(t + 1) if �(xt) = 0
(33)
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provided P [At = xt] > 0.

Proof. With xt = 1, we already note the relations

P
[
At = xt, At+1 = 1

]

= P
[
As = xs, 0 ≤ s < �(xt), A�(xt) = . . . = At+1 = 1

]

and

P
[
At = xt

]

= P
[
As = xs, 0 ≤ s < �(xt), A�(xt) = . . . = At = 1

]

If �(xt) > 0, then with some rv B independent of {As, 0 ≤ s < �(xt)}, we
conclude that

P
[
At = xt, At+1 = 1

]

= P
[
As = xs, 0 ≤ s < �(xt), B ≥ t − �(xt) + 2

]

= P
[
As = xs, 0 ≤ s < �(xt)

]
P

[
B ≥ t − �(xt) + 2

]
(34)

and

P
[
At = xt

]

= P
[
As = xs, 0 ≤ s < �(xt), B ≥ t − �(xt) + 1

]

= P
[
As = xs, 0 ≤ s < �(xt)

]
P

[
B ≥ t − �(xt) + 1

]
. (35)

The first half of (33) follows readily by combining (34) and (35) through (30).
On the other hand, if �(xt) = 0, then xt = (1, . . . , 1) and it holds that

P
[
At = xt, At+1 = 1

]
= P [A0 = . . . = At = At+1 = 1]

= P
[
B̂ ≥ t + 2

]
(36)

and

P
[
At = xt

]
= P [A0 = . . . = At = 1]

= P
[
B̂ ≥ t + 1

]
. (37)

The second half of (33) is obtained by combining (36) and (37) via (30).
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Proposition 9.3 For the stationary on-off source (I, B), for each xt in
{0, 1}t+1 with xt = 0, we have

P
[
At+1 = 1|At = xt

]
=




hI(t − �(xt) + 1) if �(xt) > 0

hÎ(t + 1) if �(xt) = 0
(38)

provided P [At = xt] > 0.

Proof. The proof follows a pattern similar to that of Proposition 9.2. With
xt = 0, we obtain the relations

P
[
At = xt, At+1 = 1

]

= P
[
As = xs, 0 ≤ s < �(xt), A�(xt) = . . . = At = 0, At+1 = 1

]

and

P
[
At = xt

]

= P
[
As = xs, 0 ≤ s < �(xt), A�(xt) = . . . = At = 0

]
.

If �(xt) > 0, then with some pair of independent rvs I and B which are
independent of {As, 0 ≤ s < �(xt)}, we conclude that

P
[
At = xt, At+1 = 1

]

= P
[
As = xs, 0 ≤ s < �(xt), I = t − �(xt) + 1, B ≥ 1

]

= P
[
As = xs, 0 ≤ s < �(xt)

]
P

[
I = t − �(xt) + 1

]
P [B ≥ 1] (39)

and

P
[
At = xt

]

= P
[
As = xs, 0 ≤ s < �(xt), I ≥ t − �(xt) + 1

]

= P
[
As = xs, 0 ≤ s < �(xt)

]
P

[
I ≥ t − �(xt) + 1

]
. (40)

Combining (39) and (40) through (30) we get the first half of (38).
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On the other hand, if �(xt) = 0, then xt = (0, . . . , 0) and it holds that

P
[
At = xt, At+1 = 1

]
= P [A0 = . . . = At = 0, At+1 = 1]

= P [I0 = t + 1, B0 ≥ 1]

= P [I0 > 0]P
[
Î = t + 1

]
P [B ≥ 1] (41)

and

P
[
At = xt

]
= P [A0 = . . . = At = 0]

= P [I0 ≥ t + 1]

= P [I0 > 0]P
[
Î ≥ t + 1

]
. (42)

We conclude to the second half of (38) by combining (41) and (42) via (30).

As a byproduct of the proofs of Propositions 9.2 and 9.3, we note the
following necessary conditions for P [At = xt] > 0 to hold: With xt = 1, it
follows from (35) and (37) that we need t − �(xt) + 1 in S(B) if �(xt) > 0
and t + 1 in S(B) if �(xt) = 0. Similarly, with xt = 0, we conclude from (40)
and (42) that we need t − �(xt) + 1 in S(I) if �(xt) > 0 and t + 1 in S(I) if
�(xt) = 0.

10 A proof of Proposition 6.1

For each t = 0, 1, . . ., we need to show that (28) holds for any pair of distinct
elements xt and yt in {0, 1}t+1 with xt ≤ yt such that (29) holds.

For t = 0, (29) automatically holds here since P [A0 = 1] = 1−P [A0 = 0] =
p with 0 < p < 1. By Lemma 9.1 we see that (28) reduces to

hÎ(1) ≤ 1 − hB̂(1) (43)

which is equivalent to (iv).
For t = 1, 2, . . ., three cases present themselves, depending on whether

(a) xt = yt = 1; (b) xt = yt = 0; and (c) xt = 0 < yt = 1. Recall that we
are only interested in the situations where (29) is satisfied. We consider each
one of three cases in turn:
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Case (a) – With xt = yt = 1, the condition xt ≤ yt implies �(yt) ≤ �(xt).
If �(yt) > 0, then �(xt) > 0 as well. By Proposition 9.2, the inequality (28)
reduces to

hB(t − �(yt) + 1) ≤ hB(t − �(xt) + 1) (44)

with t − �(xt) + 1 ≤ t − �(yt) + 1 in S(B). The inequality (44) does hold
when B is DFR. If �(yt) = 0, then �(xt) > 0 (for otherwise xt = yt) and
Proposition 9.2 this time shows that (28) is equivalent to

hB̂(t + 1) ≤ hB(t − �(xt) + 1)

with both t+1 and t− �(xt)+ 1 in S(B). The validity of this last inequality
is an easy consequence of Lemma 2.2 and of the fact that both B and B̂ are
DFR rvs since on the considered range, we have

hB̂(t + 1) ≤ hB(t) ≤ hB(t − �(xt) + 1).

Case (b) – With xt = yt = 0, the condition xt ≤ yt now implies �(xt) ≤
�(yt). If �(xt) > 0, then �(yt) > 0 and by Proposition 9.3, the inequality (28)
reduces to

hI(t − �(xt) + 1) ≤ hI(t − �(yt) + 1) (45)

with t − �(yt) + 1 ≤ t − �(xt) + 1 in S(I). The inequality (45) is implied by
the fact that the rv I is DFR under (i). If �(xt) = 0, then �(yt) > 0 (for
otherwise xt = yt) and Proposition 9.3 shows that (28) is equivalent to

hÎ(t + 1) ≤ hI(t − �(yt) + 1)

with both t + 1 and t − �(yt) + 1 in S(I). As before, this is the case on the
specified range by virtue of Lemma 2.2 which yields

hÎ(t + 1) ≤ hB(t) ≤ hI(t − �(xt) + 1)

since I and Î are DFR rvs.
Case (c) – With xt = 0 < yt = 1, four possible scenarios need to be

considered when invoking Propositions 9.2 and 9.3 to rewrite the inequality
(28) in reduced form: First, if �(xt) = �(yt) = 0, then (28) can be rewritten
as

hÎ(t + 1) ≤ 1 − hB̂(t + 1) (46)

with t + 1 in both S(B) and S(I), and this inequality does hold by virtue of
(iii) and (iv) (or equivalently, (43)).
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Next, if �(xt) = 0 and �(yt) > 0, then (28) becomes

hÎ(t + 1) ≤ 1 − hB(t − �(yt) + 1) (47)

with t− �(yt) + 1 ≤ t in S(B) and t + 1 in S(I). Because Î and B are DFR,
we get

hÎ(t + 1) + hB(t − �(yt) + 1) ≤ hÎ(2) + hB(1) (48)

and (47) indeed holds by virtue of (v). Symmetrically, if �(xt) > 0 and
�(yt) = 0 , then (28) reads

hI(t − �(xt) + 1) ≤ 1 − hB̂(t + 1) (49)

with t − �(xt) + 1 ≤ t in S(I) and t + 1 in S(B). Now, the fact that B̂ and
I are DFR leads to

hB̂(t + 1) + hI(t − �(xt) + 1) ≤ hB̂(2) + hB(1) (50)

and (49) is now immediate from (v).
Lastly, if �(xt) > 0 and �(yt) > 0, then (28) is equivalent to

hI(t − �(xt) + 1) ≤ 1 − hB(t − �(yt) + 1) (51)

with t − �(xt) + 1 in S(I) and t − �(yt) + 1 in S(B). If �(xt) 	= �(yt), say
�(xt) < �(yt), then 1 ≤ t− �(yt) + 1 while 2 ≤ t− �(xt) + 1, and (51) is now
a simple consequence of (ii) since the rvs I and B are DFR. A symmetric
argument holds mutatis mutandis if �(yt) < �(xt). We complete the proof
by noting that the case �(xt) = �(yt) is not possible under the constraints
xt = 0, yt = 1 and xt ≤ yt componentwise.

11 Renewal on-off sources

In the definition of on-off processes, the initial pair (I0, B0) could have been
selected so that

(I0, B0) =st (I, B) (52)

with I and B independent. The resulting on-off source is said to be the re-
newal on-off source (I, B). Under these assumptions, the independent version
{Ât, t = 0, 1, . . .} is simply a collection of mutually independent {0, 1}-valued
rvs with

P
[
Ât = 1

]
= P [At = 1] , t = 0, 1, . . .
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and therefore cannot be interpreted anymore as an on-off process, stationary
or renewal.

We now present conditions for the renewal on-off source (I, B) to be SIS.
The analog of Proposition 6.1 is given next.

Proposition 11.1 The renewal on-off source (I, B) satisfies the SIS prop-
erty whenever conditions (i)-(ii) of Proposition 6.1 hold.

Here, the analog of Proposition 6.2 takes the form

Proposition 11.2 The conditions (i)-(ii) in Proposition 6.1 are implied by
conditions (A.1)-(A.2) of Proposition 6.2.

Proposition 11.2 is established in a manner similar to that of Proposi-
tion 6.2, and we therefore omit the proof. As we now turn to the proof of
Proposition 11.1, we first obtain the expression (30) for the renewal on-off
source (I, B) and then derive the corresponding SIS conditions. Here, we
have I0 =st I so that P [A0 = 0] = 1. This observation leads to the following
analog of Lemma 9.1.

Lemma 11.3 For the renewal on-off source (I, B), we have

P [A1 = 1|A0 = 0] = hI(1). (53)

Proof. As in the proof of Lemma 9.1, the conclusion (53) is an easy
consequence of the facts

P [A1 = 1|A0 = 0] =
P [I0 = 1, B0 ≥ 1]

P [I0 ≥ 1]
=

P [I0 = 1]

P [I0 ≥ 1]
= P [I0 = 1]

by the independence of the rvs B0 and I0, and the fact that P [B0 ≥ 1] = 1

In the renewal case, the analogs of Propositions 9.2 and 9.3 can be ex-
pressed more compactly as the next proposition shows:
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Proposition 11.4 Fix t = 1, 2, . . .. For the renewal on-off source (I, B), for
each xt in {0, 1}t+1 with P [At = xt] > 0, we have the following: If xt = 1,
then

P
[
At+1 = 1|At = xt

]
= 1 − hB(t − �(xt) + 1), �(xt) > 0 (54)

and if xt = 0, then

P
[
At+1 = 1|At = xt

]
= hI(t − �(xt) + 1), �(xt) ≥ 0. (55)

Proof. Note that with �(xt) = 0 and xt = 1, we have xt = (1, . . . , 1) and
the event cannot occur since I0 =st I implies A0 =st 0.

A careful inspection of the proofs of Propositions 9.2 and 9.3 shows that
both (54) and (55) hold when �(xt) > 0. Hence, only the case �(xt) = 0 with
xt = 0 needs to be considered in order to complete the proof of (55). In that
case, we have xt = (0, . . . , 0), whence (41) and (42) now become

P
[
At = xt, At+1 = 1

]
= P [A0 = . . . = At = 0, At+1 = 1]

= P [I0 = t + 1, B0 ≥ 1]

= P [I = t + 1]P [B ≥ 1] (56)

and

P
[
At = xt

]
= P [A0 = . . . = At = 0]

= P [I0 ≥ t + 1] = P [I ≥ t + 1] . (57)

We conclude to the desired result by combining (56) and (57) via (30).

A proof of Proposition 11.1 can now be given: For each t = 0, 1, . . .,
we need to show that (28) holds for distinct elements xt and yt in {0, 1}t+1

satisfying (29) and such that xt ≤ yt.
For t = 0, x0 = 0 and y0 = 1, so that there is no need for comparison

here since P [A0 = y0] = 0.
Fix t = 1, 2, . . .. As in the proof of Proposition 6.1, three cases present

themselves, depending on whether (a) xt = yt = 1; (b) xt = yt = 0; and (c)
xt = 0 < yt = 1.
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Case (a) – With xt = yt = 1, the condition xt ≤ yt implies �(yt) ≤ �(xt).
By Proposition 11.4, the inequality (28) can be rewritten as

hB(t − �(yt) + 1) ≤ hB(t − �(xt) + 1) (58)

with t− �(xt) + 1 ≤ t− �(yt) + 1 in S(B). It is plain that (58) holds because
B is assumed DFR.

Case (b) – With xt = yt = 0, the condition xt ≤ yt implies �(xt) ≤ �(yt).
By Proposition 11.4, the inequality (28) reduces to

hI(t − �(xt) + 1) ≤ hI(t − �(yt) + 1) (59)

with t− �(yt) + 1 ≤ t− �(xt) + 1 in S(I), and the validity of (59) is implied
by the fact that the rv I is DFR.

Case (c) – With xt = 0 < yt = 1, invoking Proposition 11.4 we can rewrite
(28) in reduced form as

hI(t − �(xt) + 1) ≤ 1 − hB(t − �(yt) + 1) (60)

with t − �(xt) + 1 in S(I) and t − �(yt) + 1 in S(B). As in the proof of
Proposition 6.1, we must have �(xt) 	= �(yt) if both �(xt) > 0 and �(yt) > 0.
Hence, it is a simple matter to check in all feasible situations that either
2 ≤ t− �(xt)+ 1 or 2 ≤ t− �(yt)+ 1. The validity of (60) is then guaranteed
under (ii) since the rvs I and B are DFR rvs.
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